This article is from the source 'nytimes' and was first published or seen on . It last changed over 40 days ago and won't be checked again for changes.
You can find the current article at its original source at https://www.nytimes.com/2017/10/03/science/nobel-prize-physics.html
The article has changed 6 times. There is an RSS feed of changes available.
Version 1 | Version 2 |
---|---|
Nobel Prize in Physics Awarded to LIGO Black Hole Researchers | |
(about 1 hour later) | |
Rainer Weiss, a professor at the Massachusetts Institute of Technology, and Kip Thorne and Barry Barish, both of the California Institute of Technology, were awarded the Nobel Prize in Physics on Tuesday for the discovery of ripples in space-time known as gravitational waves, which were predicted by Albert Einstein a century ago but had never been directly seen. | Rainer Weiss, a professor at the Massachusetts Institute of Technology, and Kip Thorne and Barry Barish, both of the California Institute of Technology, were awarded the Nobel Prize in Physics on Tuesday for the discovery of ripples in space-time known as gravitational waves, which were predicted by Albert Einstein a century ago but had never been directly seen. |
In announcing the award, the Royal Swedish Academy called it “a discovery that shook the world.” | In announcing the award, the Royal Swedish Academy called it “a discovery that shook the world.” |
In February 2016, when an international collaboration of physicists and astronomers announced that they had recorded gravitational waves emanating from the collision of a pair of massive black holes a billion light years away, it mesmerized the world. The work validated Einstein’s longstanding prediction that space-time can shake like a bowlful of jelly when massive objects swing their weight around, and it has put astronomers on intimate terms with the deepest levels of physical reality, of a void booming and rocking with invisible cataclysms. | In February 2016, when an international collaboration of physicists and astronomers announced that they had recorded gravitational waves emanating from the collision of a pair of massive black holes a billion light years away, it mesmerized the world. The work validated Einstein’s longstanding prediction that space-time can shake like a bowlful of jelly when massive objects swing their weight around, and it has put astronomers on intimate terms with the deepest levels of physical reality, of a void booming and rocking with invisible cataclysms. |
Dr. Weiss, 85, Dr. Thorne, 77, and Dr. Barish, 81, were the architects and leaders of LIGO, the Laser Interferometer Gravitational-wave Observatory, the instrument that detected the gravitational waves, and a sister organization the LIGO Scientific Collaboration of more than a thousand scientists who analyzed the data. | Dr. Weiss, 85, Dr. Thorne, 77, and Dr. Barish, 81, were the architects and leaders of LIGO, the Laser Interferometer Gravitational-wave Observatory, the instrument that detected the gravitational waves, and a sister organization the LIGO Scientific Collaboration of more than a thousand scientists who analyzed the data. |
Dr. Weiss will receive half of the prize of 9 million Swedish Kronor and Dr. Thorne and Dr. Barish will split the other half. | Dr. Weiss will receive half of the prize of 9 million Swedish Kronor and Dr. Thorne and Dr. Barish will split the other half. |
Einstein’s General Theory of Relativity, pronounced in 1916, suggested that matter and energy would warp the geometry of space-time the way a heavy sleeper sags a mattress, producing the effect we call gravity. His equations described a universe in which space and time were dynamic. Space-time could stretch and expand, tear and collapse into black holes — objects so dense that not even light could escape them. The equations predicted, somewhat to his displeasure, that the universe was expanding from what we now call the Big Bang, and it also predicted that the motions of massive objects like black holes or other dense remnants of dead stars would ripple space-time with gravitational waves. | Einstein’s General Theory of Relativity, pronounced in 1916, suggested that matter and energy would warp the geometry of space-time the way a heavy sleeper sags a mattress, producing the effect we call gravity. His equations described a universe in which space and time were dynamic. Space-time could stretch and expand, tear and collapse into black holes — objects so dense that not even light could escape them. The equations predicted, somewhat to his displeasure, that the universe was expanding from what we now call the Big Bang, and it also predicted that the motions of massive objects like black holes or other dense remnants of dead stars would ripple space-time with gravitational waves. |
These waves would stretch and compress space in orthogonal directions as they went by, the same way that sound waves compress air. They had never been directly seen when Dr. Weiss and, independently, Dr. Drever, then at the University of Glasgow, following work by others, suggested detecting the waves by using lasers to monitor the distance between a pair of mirrors. In 1975, Dr. Weiss and Dr. Thorne, then a well-known gravitational theorist, stayed up all night in a hotel room brainstorming gravitational wave experiments during a meeting in Washington. | These waves would stretch and compress space in orthogonal directions as they went by, the same way that sound waves compress air. They had never been directly seen when Dr. Weiss and, independently, Dr. Drever, then at the University of Glasgow, following work by others, suggested detecting the waves by using lasers to monitor the distance between a pair of mirrors. In 1975, Dr. Weiss and Dr. Thorne, then a well-known gravitational theorist, stayed up all night in a hotel room brainstorming gravitational wave experiments during a meeting in Washington. |
Dr. Thorne went home and hired Dr. Drever to help develop and build a laser-based gravitational-wave detector at Caltech. Meanwhile, Dr. Weiss was doing the same thing at M.I.T. | Dr. Thorne went home and hired Dr. Drever to help develop and build a laser-based gravitational-wave detector at Caltech. Meanwhile, Dr. Weiss was doing the same thing at M.I.T. |
The technological odds were against both of them. The researchers calculated that a typical gravitational wave from out in space would change the distance between the mirrors by an almost imperceptible amount: one part in a billion trillion, less than the diameter of a proton. Dr. Weiss recalled that when he explained the experiment to his potential funders at the National Science Foundation, “everybody thought we were out of our minds.” | The technological odds were against both of them. The researchers calculated that a typical gravitational wave from out in space would change the distance between the mirrors by an almost imperceptible amount: one part in a billion trillion, less than the diameter of a proton. Dr. Weiss recalled that when he explained the experiment to his potential funders at the National Science Foundation, “everybody thought we were out of our minds.” |
The foundation, which would wind up spending $1 billion over the next 40 years on the project, ordered the two groups to merge. The plan that emerged was to build a pair of L-shaped antennas, one in Hanford, Wash., and the other in Livingston, La., with laser light bouncing along 2.5-mile-long arms in the world’s biggest vacuum tunnels to monitor the shape of space. | The foundation, which would wind up spending $1 billion over the next 40 years on the project, ordered the two groups to merge. The plan that emerged was to build a pair of L-shaped antennas, one in Hanford, Wash., and the other in Livingston, La., with laser light bouncing along 2.5-mile-long arms in the world’s biggest vacuum tunnels to monitor the shape of space. |
In 1987, the original three-headed leadership of Drs. Weiss, Drever and Thorne was abandoned for a single director, Rochus Vogt of Caltech. Dr. Drever was subsequently forced out of the detector project. But LIGO still foundered until Dr. Barish, a Caltech professor with a superb pedigree in managing Big Science projects, joined in 1994 and then became director. He reorganized the project so that it would be built in successively more sensitive phases, and he created a worldwide LIGO Scientific Collaboration of astronomers and physicists to study and analyze the data. | In 1987, the original three-headed leadership of Drs. Weiss, Drever and Thorne was abandoned for a single director, Rochus Vogt of Caltech. Dr. Drever was subsequently forced out of the detector project. But LIGO still foundered until Dr. Barish, a Caltech professor with a superb pedigree in managing Big Science projects, joined in 1994 and then became director. He reorganized the project so that it would be built in successively more sensitive phases, and he created a worldwide LIGO Scientific Collaboration of astronomers and physicists to study and analyze the data. |
“Without him there would have been no discovery,” said Sheldon Glashow, a Nobel Prize-winning theorist now at Boston University. | “Without him there would have been no discovery,” said Sheldon Glashow, a Nobel Prize-winning theorist now at Boston University. |
The most advanced version of LIGO had just started up in September 2015 when the vibrations from a pair of colliding black holes slammed the detectors in Louisiana and Washington with a rising tone, or “chirp,” for a fifth of a second. | The most advanced version of LIGO had just started up in September 2015 when the vibrations from a pair of colliding black holes slammed the detectors in Louisiana and Washington with a rising tone, or “chirp,” for a fifth of a second. |
It was also the opening bell for a whole new brand of astronomy. Since then LIGO (recently in conjunction with a new European detector, Virgo) has detected at least four more black hole collisions, opening a window on a new, unsuspected class of black holes, and rumors persist of even more exciting events in the sky. | It was also the opening bell for a whole new brand of astronomy. Since then LIGO (recently in conjunction with a new European detector, Virgo) has detected at least four more black hole collisions, opening a window on a new, unsuspected class of black holes, and rumors persist of even more exciting events in the sky. |
“Many of us really expect to learn about things we didn’t know about,” Dr. Weiss said this morning. | “Many of us really expect to learn about things we didn’t know about,” Dr. Weiss said this morning. |
Dr. Weiss was born in Berlin in 1932 and came to New York by way of Czechoslovakia in 1939. As a high school student, he became an expert in building high-quality sound systems and entered M.I.T. intending to major in electrical engineering. He inadvertently dropped out when he went to Illinois to pursue a failing romance. After coming back, he went to work in a physics lab and wound up with a Ph.D. from M.I.T. | Dr. Weiss was born in Berlin in 1932 and came to New York by way of Czechoslovakia in 1939. As a high school student, he became an expert in building high-quality sound systems and entered M.I.T. intending to major in electrical engineering. He inadvertently dropped out when he went to Illinois to pursue a failing romance. After coming back, he went to work in a physics lab and wound up with a Ph.D. from M.I.T. |
Dr. Thorne was born and raised in Logan, Utah, receiving a bachelor’s degree from Caltech and then a Ph.D. from Princeton under the tutelage of John Archibald Wheeler, an evangelist for Einstein’s theory who coined the term black holes, and who initiated Dr. Thorne into their mysteries. “He blew my mind,” Dr. Thorne later said. Dr. Thorne’s enthusiasm for black holes is not confined to the scientific journals. Now an emeritus professor at Caltech, he was one of the creators and executive producers of the 2014 movie “Interstellar,” about astronauts who go through a wormhole and encounter a giant black hole in a search for a new home for humanity. | Dr. Thorne was born and raised in Logan, Utah, receiving a bachelor’s degree from Caltech and then a Ph.D. from Princeton under the tutelage of John Archibald Wheeler, an evangelist for Einstein’s theory who coined the term black holes, and who initiated Dr. Thorne into their mysteries. “He blew my mind,” Dr. Thorne later said. Dr. Thorne’s enthusiasm for black holes is not confined to the scientific journals. Now an emeritus professor at Caltech, he was one of the creators and executive producers of the 2014 movie “Interstellar,” about astronauts who go through a wormhole and encounter a giant black hole in a search for a new home for humanity. |
Dr. Barish was born in Omaha, Neb., was raised in Los Angeles and studied physics at the University of California, Berkeley, getting a doctorate there before joining Caltech. One of the mandarins of Big Science, he had led a team that designed a $1 billion detector for the giant Superconducting Supercollider, which would have been the world’s biggest particle machine had it not been canceled by Congress in 1993, before being asked to take over LIGO. | Dr. Barish was born in Omaha, Neb., was raised in Los Angeles and studied physics at the University of California, Berkeley, getting a doctorate there before joining Caltech. One of the mandarins of Big Science, he had led a team that designed a $1 billion detector for the giant Superconducting Supercollider, which would have been the world’s biggest particle machine had it not been canceled by Congress in 1993, before being asked to take over LIGO. |
Subsequently, Dr. Barish led the international effort to design the International Linear Collider, which could be the next big particle accelerator in the world, if it ever gets built. | Subsequently, Dr. Barish led the international effort to design the International Linear Collider, which could be the next big particle accelerator in the world, if it ever gets built. |
Reached by telephone by the Nobel committee, Dr. Weiss said that he considered the award as recognition for the work of about a thousand people over “I hate to say it — 40 years.” | Reached by telephone by the Nobel committee, Dr. Weiss said that he considered the award as recognition for the work of about a thousand people over “I hate to say it — 40 years.” |
He added that when the first chirp came it on Sept. 14, 2015, “many of us didn’t believe it,” thinking it might be a test signal that had been inserted into the data. It took them two months to convince themselves it was real. | He added that when the first chirp came it on Sept. 14, 2015, “many of us didn’t believe it,” thinking it might be a test signal that had been inserted into the data. It took them two months to convince themselves it was real. |
The prize was greeted with praise around the world. “Well done Sweden,” said Michael Turner a cosmologist at the University of Chicago, addding about the result, “It took a village and 100 years to do this.” | The prize was greeted with praise around the world. “Well done Sweden,” said Michael Turner a cosmologist at the University of Chicago, addding about the result, “It took a village and 100 years to do this.” |
Janna Levin, a gravitational theorist at Barnard College, who is not part of LIGO but wrote a book, “Black Hole Blues and Other Songs From Outer Space,” about it, said in a text message “We all woke up early in anticipation. I’m thrilled for the entire LIGO collaboration.” | Janna Levin, a gravitational theorist at Barnard College, who is not part of LIGO but wrote a book, “Black Hole Blues and Other Songs From Outer Space,” about it, said in a text message “We all woke up early in anticipation. I’m thrilled for the entire LIGO collaboration.” |
The awarding of a Nobel to Drs. Weiss and Thorne completes a kind of scientific Grand Slam. In the last two years, along with Dr. Drever, they have shared a cavalcade of prestigious and lucrative prizes including the Kavli Prize for Astrophysics, the Gruber Cosmology Prize, the Shaw Prize in Astronomy and a Special Breakthrough Prize in Fundamental Physics. It is possible that had he lived, Dr. Drever could have shared in the Nobel as well, but he died last March, and the Nobel is not awarded posthumously. | The awarding of a Nobel to Drs. Weiss and Thorne completes a kind of scientific Grand Slam. In the last two years, along with Dr. Drever, they have shared a cavalcade of prestigious and lucrative prizes including the Kavli Prize for Astrophysics, the Gruber Cosmology Prize, the Shaw Prize in Astronomy and a Special Breakthrough Prize in Fundamental Physics. It is possible that had he lived, Dr. Drever could have shared in the Nobel as well, but he died last March, and the Nobel is not awarded posthumously. |
Jeffrey C. Hall, Michael Rosbash and Michael W. Young were awarded the Nobel Prize in Medicine on Monday for discoveries about the molecular mechanisms controlling the body’s circadian rhythm. | Jeffrey C. Hall, Michael Rosbash and Michael W. Young were awarded the Nobel Prize in Medicine on Monday for discoveries about the molecular mechanisms controlling the body’s circadian rhythm. |
David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz were recognized for research into the bizarre properties of matter in extreme states, including superconductors, superfluids and thin magnetic fields. | David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz were recognized for research into the bizarre properties of matter in extreme states, including superconductors, superfluids and thin magnetic fields. |
Four more will be awarded in the days to come: | Four more will be awarded in the days to come: |
■ The Nobel Prize in Chemistry will be announced on Wednesday in Sweden. Read about last year’s winners, Jean-Pierre Sauvage, J. Fraser Stoddart and Bernard L. Feringa. | ■ The Nobel Prize in Chemistry will be announced on Wednesday in Sweden. Read about last year’s winners, Jean-Pierre Sauvage, J. Fraser Stoddart and Bernard L. Feringa. |
■ The Nobel Prize in Literature will be announced on Thursday in Sweden. Read about last year’s winner, Bob Dylan. | ■ The Nobel Prize in Literature will be announced on Thursday in Sweden. Read about last year’s winner, Bob Dylan. |
■ The Nobel Peace Prize will be announced on Friday in Norway. Read about last year’s winner, President Juan Manuel Santos of Colombia. | ■ The Nobel Peace Prize will be announced on Friday in Norway. Read about last year’s winner, President Juan Manuel Santos of Colombia. |
■ The Nobel Memorial Prize in Economic Science will be announced on Monday, Oct. 9, in Sweden. Read about last year’s winners, Oliver Hart and Bengt Holmstrom. | ■ The Nobel Memorial Prize in Economic Science will be announced on Monday, Oct. 9, in Sweden. Read about last year’s winners, Oliver Hart and Bengt Holmstrom. |