This article is from the source 'bbc' and was first published or seen on . It will not be checked again for changes.

You can find the current article at its original source at http://news.bbc.co.uk/go/rss/-/1/hi/sci/tech/7288426.stm

The article has changed 4 times. There is an RSS feed of changes available.

Version 2 Version 3
Chemical brain controls nanobots Chemical brain controls nanobots
(about 4 hours later)
A tiny chemical "brain" which could one day act as a remote control for swarms of nano-machines has been invented.A tiny chemical "brain" which could one day act as a remote control for swarms of nano-machines has been invented.
The molecular device - just two billionths of a metre across - was able to control eight of the microscopic machines simultaneously in a test.The molecular device - just two billionths of a metre across - was able to control eight of the microscopic machines simultaneously in a test.
Writing in Proceedings of the National Academy of Sciences, scientists say it could also be used to boost the processing power of future computers.Writing in Proceedings of the National Academy of Sciences, scientists say it could also be used to boost the processing power of future computers.
Many experts have high hopes for nano-machines in treating disease.Many experts have high hopes for nano-machines in treating disease.
"If [in the future] you want to remotely operate on a tumour you might want to send some molecular machines there," explained Dr Anirban Bandyopadhyay of the National Institute for Materials Science, Tsukuba, Japan. "If [in the future] you want to remotely operate on a tumour you might want to send some molecular machines there," explained Dr Anirban Bandyopadhyay of the International Center for Young Scientists, Tsukuba, Japan.
"But you cannot just put them into the blood and [expect them] to go to the right place.""But you cannot just put them into the blood and [expect them] to go to the right place."
Dr Bandyopadhyay believes his device may offer a solution. One day they may be able to guide the nanobots through the body and control their functions, he said.Dr Bandyopadhyay believes his device may offer a solution. One day they may be able to guide the nanobots through the body and control their functions, he said.
"That kind of device simply did not exist; this is the first time we have created a nano-brain," he told BBC News."That kind of device simply did not exist; this is the first time we have created a nano-brain," he told BBC News.
Computer brainComputer brain
The machine is made from 17 molecules of the chemical duroquinone. Each one is known as a "logic device".The machine is made from 17 molecules of the chemical duroquinone. Each one is known as a "logic device".
How nanotechnology is building the future from the bottom upIn picturesHow nanotechnology is building the future from the bottom upIn pictures
They each resemble a ring with four protruding spokes that can be independently rotated to represent four different states.They each resemble a ring with four protruding spokes that can be independently rotated to represent four different states.
One duroquinone molecule sits at the centre of a ring formed by the remaining 16. All are connected by chemical bonds, known as hydrogen bonds.One duroquinone molecule sits at the centre of a ring formed by the remaining 16. All are connected by chemical bonds, known as hydrogen bonds.
The state of the control molecule at the centre is switched by a scanning tunnelling microscope (STM).The state of the control molecule at the centre is switched by a scanning tunnelling microscope (STM).
These large machines are a standard part of the nanotechnologist's tool kit, and allow the viewing and manipulation of atomic surfaces.These large machines are a standard part of the nanotechnologist's tool kit, and allow the viewing and manipulation of atomic surfaces.
Using the STM, the researchers showed they could change the central molecule's state and simultaneously switch the states of the surrounding 16.Using the STM, the researchers showed they could change the central molecule's state and simultaneously switch the states of the surrounding 16.
"We instruct only one molecule and it simultaneously and logically instructs 16 others at a time," said Dr Bandyopadhyay."We instruct only one molecule and it simultaneously and logically instructs 16 others at a time," said Dr Bandyopadhyay.
The configuration allows four billion different possible combinations of outcome.The configuration allows four billion different possible combinations of outcome.
The two nanometre diameter structure was inspired by the parallel communication of glial cells inside a human brain, according to the team.The two nanometre diameter structure was inspired by the parallel communication of glial cells inside a human brain, according to the team.
Robot controlRobot control
To test the control unit, the researchers simulated docking eight existing nano-machines to the structure, creating a "nano-factory". To test the control unit, the researchers simulated docking eight existing nano-machines to the structure, creating a "nano-factory" or a kind of "chemical swiss army knife".
Scientists believe nano-machines could have medical applicationsScientists believe nano-machines could have medical applications
The devices, created by other research groups, included the "world's tiniest elevator", a molecular platform that can be raised or lowered on command. The attached devices, created by other research groups, included the "world's tiniest elevator", a molecular platform that can be raised or lowered on command.
The device is about two and a half nanometres (billionths of a metre) high, and the lift moves less than one nanometre up and down.The device is about two and a half nanometres (billionths of a metre) high, and the lift moves less than one nanometre up and down.
All eight machines simultaneously responded to a single instruction in the simulation.All eight machines simultaneously responded to a single instruction in the simulation.
"We have clear cut evidence that we can control those machines," said Dr Bandyopadhyay."We have clear cut evidence that we can control those machines," said Dr Bandyopadhyay.
This "one-to-many" communication and the device's ability to act as a central control unit also raises the possibility of using the device in future computers, he said.This "one-to-many" communication and the device's ability to act as a central control unit also raises the possibility of using the device in future computers, he said.
Machines built using devices such as this would be able to process 16 bits of information simultaneously.Machines built using devices such as this would be able to process 16 bits of information simultaneously.
Current silicon Central Processing Units (CPUs) can only carry out one instruction at a time, albeit thousands of times per second.Current silicon Central Processing Units (CPUs) can only carry out one instruction at a time, albeit thousands of times per second.
The researchers say they have already built faster machines, capable of 256 simultaneous operations, and have designed one capable of 1024.The researchers say they have already built faster machines, capable of 256 simultaneous operations, and have designed one capable of 1024.
However, according to Professor Andrew Adamatzky of the University of the West England (UWE), making a workable computer would be very difficult at the moment.However, according to Professor Andrew Adamatzky of the University of the West England (UWE), making a workable computer would be very difficult at the moment.
"As with other implementations of unconventional computers the application is very limited, because they operate [it] using scanning tunnel microscopy," he said."As with other implementations of unconventional computers the application is very limited, because they operate [it] using scanning tunnel microscopy," he said.
But, he said, the work is promising.But, he said, the work is promising.
"I am sure with time such molecular CPUs can be integrated in molecular robots, so they will simply interact with other molecular parts autonomously.""I am sure with time such molecular CPUs can be integrated in molecular robots, so they will simply interact with other molecular parts autonomously."